

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Liquid-Liquid Extraction of Copper from Ammoniacal Solution with β -Diketones

W. Mickler^a; E. Uhlemann^a

^a INSTITUT FÜR ANORGANISCHE CHEMIE UNIVERSITÄT POTSDAM, POTSDAM, GERMANY

To cite this Article Mickler, W. and Uhlemann, E.(1992) 'Liquid-Liquid Extraction of Copper from Ammoniacal Solution with β -Diketones', *Separation Science and Technology*, 27: 12, 1669 — 1674

To link to this Article: DOI: 10.1080/01496399208029231

URL: <http://dx.doi.org/10.1080/01496399208029231>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NOTE

Liquid–Liquid Extraction of Copper from Ammoniacal Solution with β -Diketones

W. MICKLER and E. UHLEMANN

INSTITUT FÜR ANORGANISCHE CHEMIE
UNIVERSITÄT POTSDAM
AM NEUEN PALAIS 10, 0-1571 POTSDAM, GERMANY

Key Words: Liquid–liquid extraction; 1-Phenyl(cyclo)alkane-1,3-diones; LIX 54; Copper extraction; Ammoniacal solution

INTRODUCTION

Some β -diketones such as LIX 51 (Henkel KGaA), Hostarex DK 16 (Hoechst AG), LIX 54 (Henkel KGaA), and MX 80A (Sigma Innovation, Sweden) were developed for technical applications (1) but only LIX 54 is commercially available. The use of LIX 54 to separate copper from ammoniacal etch solutions is described by patent applications (2–4) and an information paper of Henkel KGaA. The extraction of transition metals with LIX 54 was studied by Ramesh et al. (5). LIX 54 in a mixture with neutral donor ligands also proved suitable for the extraction of lanthanide elements (6). The active component of LIX 54 and MX 80A was recently identified as a mixture of isomeric 1-phenyl-3-iso-heptyl-1,3-propanediones (7, 8). Analogous β -diketones are easily available.

In continuation of previous work (9), the extraction behavior of LIX 54 and of some synthesized pure β -diketones of the same type are compared in this paper. The compounds studied are given in Table 1.

EXPERIMENTAL

Extractants

The β -diketones were synthesized by following a literature procedure (10) that uses the Claisen condensation of acetophenone with the corre-

TABLE I
 β -Diketones of the Type $C_6H_5-CO-CH_2-CO-R$

No.	R	Symbol	bp (°C)	Analytical data calculated (found) (%)
1	$CH_3-(CH_2)_6-$	■	205–208/10 torr	C 78.01 (78.82) H 9.02 (8.90)
2	$CH_3-(CH_2)_3-CH-$ C_2H_5	▲	140–143/10 torr	C 78.01 (78.94) H 9.02 (9.02)
3	-CH ₂ -	□	210–230/1 torr	C 78.65 (79.40) H 8.25 (9.08)
4	-CH ₂ -CH ₂ -	(●)	140–145/10 torr	C 78.65 (79.29) H 8.25 (8.96)
5	<i>i</i> -C ₇ H ₁₃ - (mixture)	*	190–195/10 torr	LIX 54
6	<i>i</i> -C ₇ H ₁₃ - (mixture)	○	198–202/10 torr	MX 80 A

sponding phenyl or ethyl esters in the presence of sodium amide. The compounds were purified by vacuum distillation.

Extraction Studies

The conditions for the extraction were: *Concentration*: $c_{Cu^{2+}}$; $10^{-4} M$; $c_{extractant}$; $10^{-2} M$; $I = 0.1 M$ KCl or NH₄Cl. *Phase ratio*: $V_{org}:V_{aq} = 1:1$ (20 mL); temperature, 25°C. *Extraction time*: 10 min (mechanical shaker). *pH adjustment and measurement*: addition of HNO₃ or NaOH, pH meter MV 86 (Präcitronic, Dresden) with glass electrode EGA 50 N (Forschungs-institut Meinsberg). *Metal determination*: atomic absorption spectrometer AAS-3 (Carl Zeiss, Jena). *Solvent (of the extractant)*: kerosene, bp 100–140°C.

All chemicals used were of p.a. quality. A Merck standard solution was used as the stock copper solution.

RESULTS AND DISCUSSION

The reaction of copper with the extractants described here was accomplished within 10 minutes. There is quantitative extraction in the pH 5 to

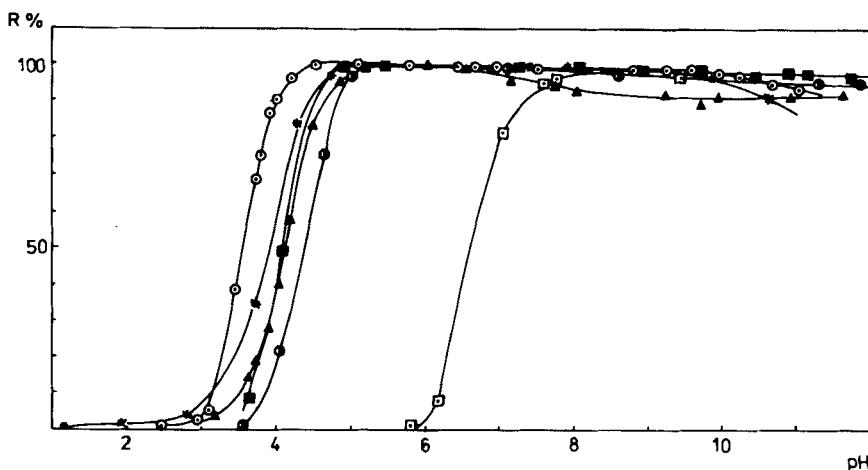


FIG. 1. Extraction of copper with different β -diketones, $R = f(\text{pH})$. $c_{\text{Cu}^{2+}}: 10^{-4} \text{ mol/L}$ ($I = 0.1 \text{ mol/L KNO}_3$).

10 region (Fig. 1), whereas 1-phenyl-3-cyclohexylmethyl-propane-1,3-dione gives satisfactory results only above pH 6. Copper forms the expected 1:2 complex compound with the extractant, as can be seen from the slope of the $\log D/\text{pH}$ plot in Fig. 2. A comparison of the different extractants is given by Table 2. According to the values of K_{ex} and pH 0.5, the order of extractability as dependent on the alkyl substituent is cyclohexylmethyl < cyclopentylethyl < *n*-heptyl < 2-ethylpentyl < LIX 54 < MX 80 A. However, there are only small differences between these extractants because of the similarities in acidity, complex stability, and the solubilities of the extractant and its metal complex in the organic solvent. The best results were obtained by using highly branched 1-phenyl-3-alkyl-propane-1,3-diones which are the active components of LIX 54. For the mean efficiency of 1-phenyl-3-cyclohexylmethyl-propane-1,3-dione, no simple explanation except a possible steric hindrance was found.

Figures 3 and 4 show the extraction of copper from ammoniacal solution. With an ionic strength (I) of 0.1 M (NH_4Cl), no difficulties occurred up to pH 10, but then the copper extraction is significantly hindered due to the large increase in ammonia concentration in the aqueous phase (Fig. 4). The reason for this is the competitive reaction leading to the copper ammine complex.

Generally, highly branched extractants of the LIX 54 type are preferred as reagents. The excellent solubility of the copper complex in special hydrocarbon solvents is a good basis for hydrometallurgical applications.

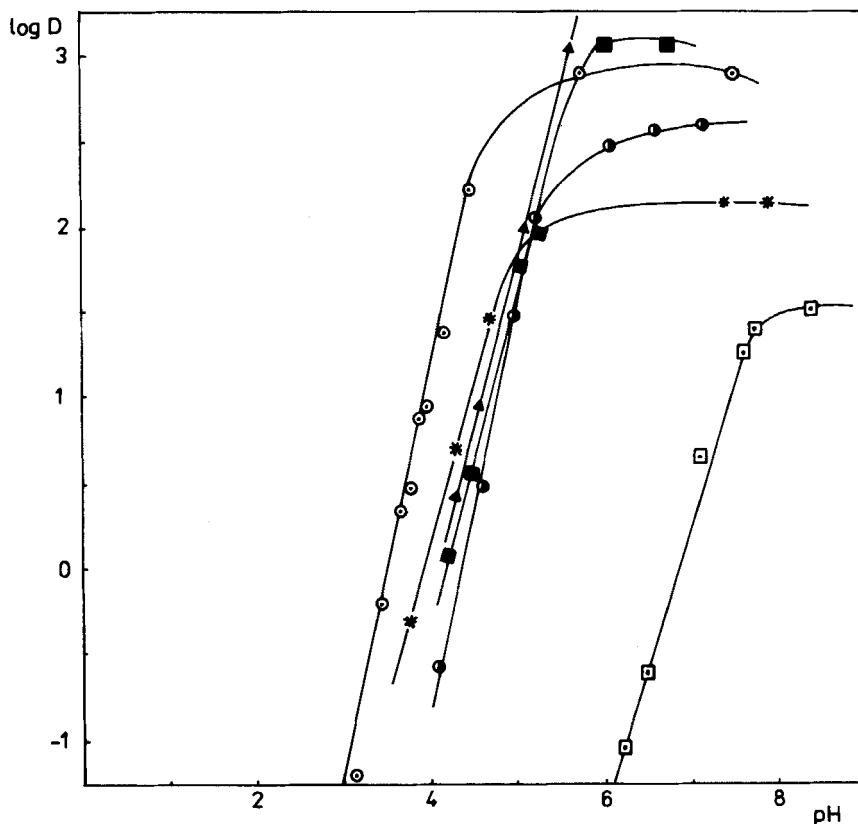


FIG. 2. Extraction of copper with different β -diketones, $\lg D = f(\text{pH})$. $c_{\text{Cu}^{2+}}: 10^{-4} \text{ mol/L}$ ($I = 0.1 \text{ mol/L KNO}_3$).

TABLE 2
Extraction Data of the
 β -Diketones of Table 1

No.	pH	$\lg K_{\text{ex}}$
1	4.23	-4.50
2	4.10	-4.20
3	6.60	-9.20
4	4.32	-4.64
5	3.90	-3.80
6	3.55	-3.10

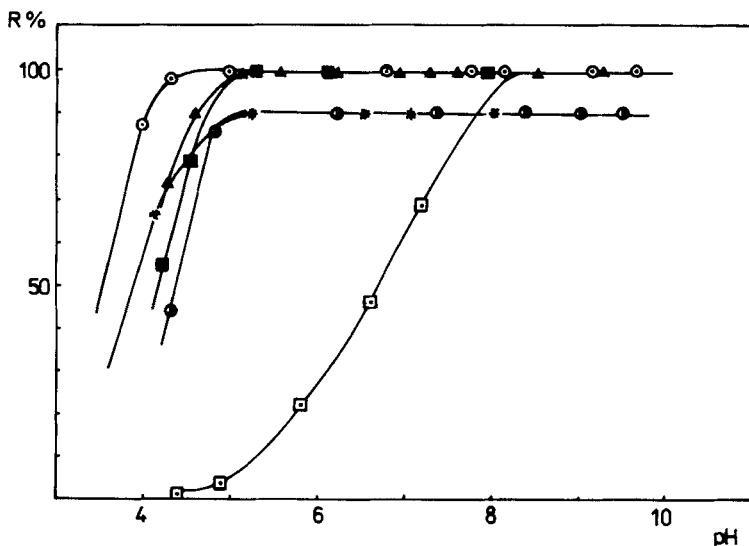


FIG. 3. Extraction of copper from ammoniacal solution, $R = f (\text{pH})$. $c_{\text{Cu}^{2+}}: 10^{-4} \text{ mol/L}$ ($I = 0.1 \text{ mol/L NH}_4\text{Cl}$).

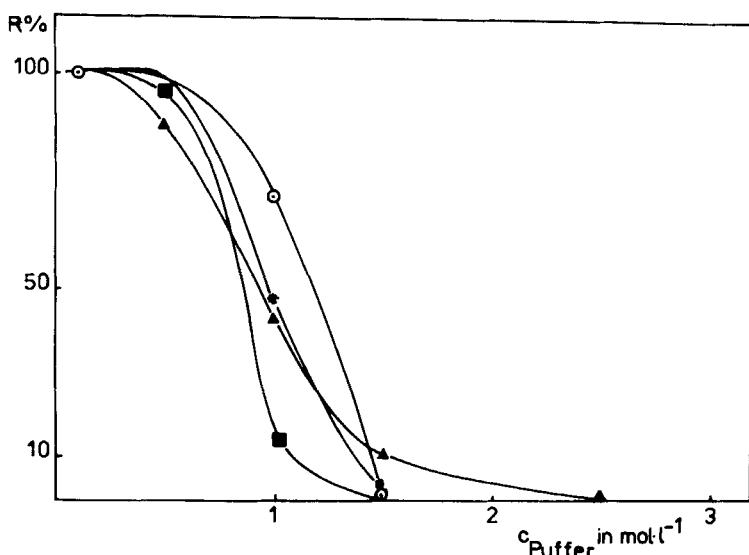


FIG. 4. Extraction of copper from ammoniacal solution. $c_{\text{HL}}: 10\%$. $c_{\text{Cu}}: 3 \text{ g/L}$ in $\text{NH}_3/\text{NH}_4\text{Cl}$ -buffer. Solvent: kerosene/toluene (1 + 1).

Acknowledgment

Samples of LIX 54 were kindly supplied by Henkel KGaA, Düsseldorf.

REFERENCES

1. L. L. Taylarides, J. E. Bae, and C. R. Lee, *Sep. Sci. Technol.*, 22, 584 (1987).
2. H. Reinhard and H. Ottertun, *EPA 5415*, 1975.
3. S. O. S. Anderson, H. Ottertun, and H. Reinhard, *EPA 36401*.
4. W. Babcock, M. Tuttle, J. W. Brooke, and R. W. Baker, *EPA 159450*, 1984.
5. V. Ramesh and G. N. Rao, *Indian J. Technol.*, 25, 418 (1987).
6. S. Nakamura, Y. Surakitbanharn, and K. Akiba, *Anal. Sci.*, 6, 295 (1990).
7. M. J. Zapatero, J. M. Castresana, and M. P. Elizalde, *Ibid.*, 5, 591 (1989).
8. W. Mickler, E. Uhlemann, R. Herzschuh, B. Wenclawiak, and L. Plaggenborg, *Sep. Sci. Technol.*, 27, 1171 (1992).
9. W. Mickler and E. Uhlemann, *Proc. Int. Conf. Coord. Chem., Gera, II*, 77 (1990).
10. E. H. Man, W. Swamer, and C. R. Hauser, *J. Am. Chem. Soc.*, 73, 901 (1951).

Received by editor November 7, 1991